\qquad

Power From Fusion

The Energy of Fusion

The masses of subatomic particles are given in atomic mass units, amu's or u's where

$$
1 u=1.6605 \times 10^{-27} \mathrm{~kg} .
$$

Do the following subtraction to find how much mass is "lost" when 4 hydrogen atoms fuse to one helium: ${ }^{2}$

Find the energy produced in each fusion reaction.
$1 .{ }^{2}$ Convert this "lost" mass from $\mathrm{u} /$ fusion to $\mathrm{kg} /$ fusion using $1 \mathrm{u}=1.661 \times 10^{-27} \mathrm{~kg} \quad$ (keep 5 sig figs)

Use the conversion factor to multiply by one \& get rid of unwanted units (u)!
2. ${ }^{2}$ Convert from mass/fusion to energy/fusion (in Joules) using $E=m c^{2}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (keep 4 sig figs)

3. ${ }^{2}$ Convert the energy/fusion from Joules to kilowatt-hour using $1 \mathrm{kWhr}=3.6 \times 10^{6} \mathrm{~J}$.

$$
\frac{4.283 \times 10^{-12} \mathrm{~J}}{\text { fusion }}\left(\frac{1 \mathrm{kWhr}}{3.6 \times 10^{6} \mathrm{~J}}\right)=\frac{1.190 \times 10^{-18} \mathrm{kWhr}}{\text { fusion }} \quad \frac{\mathrm{kWhr}}{\text { fusion }}
$$

The energy released by a single fusion reaction of

4 hydrogen atoms to one helium atom is:
1.190×10^{-18}
kWhr
fusion

How many pounds of H would we have to fuse to provide energy used in New York State?
4. Convert this ($1.190 \times 10^{-18} \mathrm{kWhr} /$ fusion) to fusions/NY resident using $15,651 \mathrm{kWhr}$ per capita which the US Energy Information Administration gives as the 2021 New York Sate Usage. (keep 4 sig figs)

$\underbrace{\frac{15651 \mathrm{kWhr}}{\text { NY resident }}}_{$| Use the conversion factor to multiply by |
| :--- |
| one \& get rid of unwanted units (kWhr)! |\(}(\underbrace{\left.\frac{fusion}{1.190 \times 10^{-18} \mathrm{kWhr}}\right)}_{\begin{array}{c}Flip this factor to get fusions on top, then

get rid of kWhr with the conversion factor\end{array}}=\frac{1.315 \times 10^{22} fusions}{NY Resident} \quad \frac{fusions}{NY resident}\)

It should seem like a HUGE number!! BUT ... how much hydrogen is this?
5 . 2 Each fusion reaction uses $6.694 \times 10^{-27} \mathrm{~kg}$ of H (that becomes He and energy). Find the total H that would have to be fused to supply an average households energy using your result in \#4

$$
\frac{1.315 \times 10^{22} \text { fusions }}{\text { NY resident }}\left(\frac{6.694 \times 10^{-27} \mathrm{~kg}}{\text { fusion }}\right)=\frac{8.804 \times 10^{-5} \mathrm{~kg}}{\text { NY resident }} \quad \frac{\mathrm{kg} \text { of } \mathrm{H}}{\text { NY resident }}
$$

6. ${ }^{2}$ To supply $19,840,000$ NY residents, how many kg of hydrogen would need to undergo fusion?

$$
\frac{8.804 \times 10^{-5} \mathrm{~kg}}{\text { person }}\left(\frac{19,840,000 \text { persons }}{\text { NY State 2021 }}\right)=\frac{1,747 \mathrm{~kg} \mathrm{H}}{\text { NY State }} \quad \frac{\mathrm{kg} \text { of H}}{\text { NY State }}
$$

7. ${ }^{2}$ How many pounds of hydrogen is this if $1 \mathrm{~kg}=2.2 \mathrm{lb}$? What do you think of this number?

$$
\frac{1,747 \mathrm{~kg} \mathrm{H}}{\text { NY State residents }}\left(\frac{2.2 \mathrm{lb}}{\mathrm{~kg}}\right)=\frac{3843 \mathrm{lb}}{\text { NY State }} \sim \text { about } 2 \text { tons! } \quad \frac{\mathrm{lb} \text { of H }}{\text { NY State }}
$$

What do you think of this number? ${ }^{2}$

The Energy of Sol ... How much H does Sol fuse each second?

Sol's luminosity is 3.827×10^{26} Watts or

$$
L_{\text {Sol }}=3.827 \times 10^{26} \frac{\text { Joules }}{\text { second }}
$$

provided by the fusion of hydrogen into helium. On p. 1 (\#2), you calculated that Each fusion yields an energy of

$$
E_{\text {fusion }}=4.283 \times 10^{-12} \frac{\text { Joules }}{\text { fusion }}
$$

$1 .{ }^{2}$ Use these to find the number of hydrogen fusions per second that provide Sol's $3.827 \times 10^{26} \mathrm{~J} / \mathrm{sec}$ (keep 4 sig figs).

$$
\frac{3.827 \times 10^{26} \mathrm{~J}}{\text { second }}(\underbrace{\left.\frac{1 \text { fusion }}{4.283 \times 10^{-12} \mathrm{~J}}\right)}_{\begin{array}{c}
\text { Flip this factor to get fusions on top, then } \\
\text { get rid of J with Sol's Luminosity }
\end{array}}=\frac{8.935 \times 10^{37} \text { fusions }}{\text { second }} \quad \frac{\text { fusions }}{\text { second }}
$$

$$
m_{\text {fusion }}=6.694 \times 10^{-27} \frac{\mathrm{~kg} \text { of } \mathrm{H}}{\text { fusion }}
$$

2. ${ }^{2}$ Convert your result from \#1 (8.935×10^{37} fusions $/ \mathrm{sec}$) from fusions $/ \mathrm{sec}$ to $\mathrm{kg} / \mathrm{sec}$ using this.

$$
\frac{8.935 \times 10^{37} \text { fusions }}{\text { second }}\left(\frac{6.694 \times 10^{-27} \mathrm{~kg}}{1 \text { fusion }}\right)=\frac{5.981 \times 10^{11} \mathrm{~kg}}{\text { second }}
$$

An aircraft carrier such as the USS Eneterprise (CVN-65) shown, weighs 94,781 metric tons (1 metric ton $=1$ tonne $=1000 \mathrm{~kg}$). How many of these ships would have to be fused each second to supply Sol's energy (IF they were pure hydrogen ... not a great shipbuilding material, but hey, this is the ivory tower, eh?)?

1. ${ }^{2}$ Find the mass of the USS Enterprise in kg (keep 4 sig figs)

$$
\frac{94781 \text { tonnes }}{1 \text { USS Enterprise }} \times\left(\frac{1000 \mathrm{~kg}}{\text { tonne }}\right)=\frac{9.478 \times 10^{7} \mathrm{~kg}}{\text { USS Enterprise }}
$$

kg
USS Enterprise
2. ${ }^{2}$ Convert the amount the sun fuses from $\mathrm{kg} / \mathrm{sec}$ to aircraft carriers/second (USS Enterprise/sec)

$$
\frac{5.981 \times 10^{11} \mathrm{~kg}}{\text { second }} \times\left(\frac{1 \text { USS Enterprise }}{9.4781 \times 10^{7} \mathrm{~kg}}\right)=\frac{6310 \mathrm{ACC}}{\text { second }}
$$

3. ${ }^{2}$ Compare this to the amount needed to supply New York State

The sun fuses 6310 USS Enterprise masses of hydrogen to helium every second ... and fusing 3842 Ib would supply NY State for a year!!!

The Energy of Sol ... How much H does Sol turn from matter to energy each second?
Sol's luminosity is 3.827×10^{26} Watts or

$$
L_{\text {Sol }}=3.827 \times 10^{26} \frac{\text { Joules }}{\text { second }}
$$

provided by the fusion of hydrogen into helium. On p. 1 (\#2), you calculated that Each fusion yields an energy of

$$
E_{\text {fusion }}=4.283 \times 10^{-12} \frac{\text { Joules }}{\text { fusion }}
$$

The number of hydrogen fusions per second that provide Sol's $3.827 \times 10^{26} \mathrm{~J} / \mathrm{sec}$ is

$$
N_{\text {fusions }}=8.935 \times 10^{37} \frac{\text { fusions }}{\text { second }}
$$

The mass of H used by the Sun per second is

$$
m_{\text {H fused }}=6310 \frac{\text { ACC Fused }}{\text { Second }}
$$

4. ${ }^{2}$ On p. 1, you found that 0.007 times the mass of the hydrogen ... matter ... used is converted to pure energy. Calculate the mass of hydrogen turned completely into energy by the Sun each second

$$
\frac{6310 \text { ACC Fused }}{\text { second }} \times(0.007)=\frac{45 \text { ACC to Energy }}{\text { second }} \quad \frac{\text { ACC to Energy }}{\text { second }}
$$

5. ${ }^{2}$ What do you think of this much matter being converted entirely to energy EVERY SECOND??

It blows my mind!!

